Metamaterials for enhanced polarization conversion in plasmonic excitation.

نویسندگان

  • Liang Feng
  • Amit Mizrahi
  • Steve Zamek
  • Zhaowei Liu
  • Vitaliy Lomakin
  • Yeshaiahu Fainman
چکیده

Surface plasmons efficient excitation is typically expected to be strongly constrained to transverse magnetic (TM) polarized incidence, as demonstrated so far, due to its intrinsic TM polarization. We report a designer plasmonic metamaterial that is engineered in a deep subwavelength scale in visible optical frequencies to overcome this fundamental limitation, and allows transverse electric (TE) polarized incidence to be strongly coupled to surface plasmons. The experimental verification, which is consistent with the analytical and numerical models, demonstrates this enhanced TE-to-plasmon coupling with efficiency close to 100%, which is far from what is possible through naturally available materials. This discovery will help to efficiently utilize the energy fallen into TE polarization and drastically increase overall excitation efficiency of future plasmonic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-field asymmetries in plasmonic resonators.

Surface-enhanced infrared absorption (SEIRA) spectroscopy exploits the locally enhanced field surrounding plasmonic metamaterials to increase the sensitivity of infrared spectroscopy. The light polarization and incidence angle are important factors for exciting plasmonic nanostructures; however, such angle dependence is often ignored in SEIRA experiments, typically carried out with Cassegrain o...

متن کامل

Photocurrent in graphene harnessed by tunable intrinsic plasmons.

Graphene's optical properties in the infrared and terahertz can be tailored and enhanced by patterning graphene into periodic metamaterials with sub-wavelength feature sizes. Here we demonstrate polarization-sensitive and gate-tunable photodetection in graphene nanoribbon arrays. The long-lived hybrid plasmon-phonon modes utilized are coupled excitations of electron density oscillations and sub...

متن کامل

Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials

Infrared vibrational spectroscopy is an effective technique which enables the direct probe of molecular fingerprints, and such detection can be further enhanced by the emerging engineered plasmonic metamaterials. Here we experimentally demonstrate ultrasensitive detection and characterization of polymer molecules based on an asymmetric infrared plasmonic metamaterial, and quantitatively analyze...

متن کامل

Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials

The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier densi...

متن کامل

Raman enhancement on a broadband meta-surface.

Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2011